Parametric model

Results: 583



#Item
361Estimation theory / Statistical inference / Bayes estimator / Bayesian inference / Normal distribution / Prior probability / Parametric model / Diameter at breast height / Statistics / Statistical theory / Bayesian statistics

-6Ê   Silva Fennica[removed]research articles

Add to Reading List

Source URL: www.silvafennica.fi

Language: English - Date: 2013-05-07 04:22:19
362Econometrics / Bayesian inference / Robust statistics / Non-parametric statistics / Bayes factor / Mixture model / Bootstrapping / Regression analysis / Linear regression / Statistics / Statistical inference / Bayesian statistics

February 20, 2014 Time: 10:25am fm.tex

Add to Reading List

Source URL: press.princeton.edu

Language: English - Date: 2014-04-07 17:06:48
363COCOMO / Software metrics / Barry Boehm / Software development process / Source lines of code / Estimation / Regression analysis / Calibration / Software parametric models / Statistics / Project management / Software development

Calibrating the COCOMO II Post-Architecture Model Bradford Clark Center for Software Engg. Computer Science Department Univ. of Southern California Los Angeles, CA 90089, USA

Add to Reading List

Source URL: sunset.usc.edu

Language: English - Date: 1998-06-23 11:05:39
364Econometrics / M-estimators / Regression analysis / Parametric model / Maximum likelihood / Fisher information / Loss function / Linear regression / Matrix norm / Statistics / Estimation theory / Statistical theory

Statistical Science 2012, Vol. 27, No. 4, 538–557 DOI: [removed]STS400 © Institute of Mathematical Statistics, 2012 A Unified Framework for High-Dimensional

Add to Reading List

Source URL: www.eecs.berkeley.edu

Language: English - Date: 2012-12-21 20:16:50
365Econometrics / Statistical inference / Regression analysis / Maximum likelihood / Parametric model / Linear regression / Consistent estimator / Matrix norm / Loss function / Statistics / Estimation theory / Statistical theory

Submitted to the Statistical Science A unified framework for high-dimensional analysis of M -estimators with decomposable regularizers

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2012-06-03 10:52:44
366Econometrics / M-estimators / Regression analysis / Parametric model / Maximum likelihood / Fisher information / Loss function / Linear regression / Consistent estimator / Statistics / Estimation theory / Statistical theory

Statistical Science 2012, Vol. 27, No. 4, 538–557 DOI: [removed]STS400 © Institute of Mathematical Statistics, 2012 A Unified Framework for High-Dimensional

Add to Reading List

Source URL: www.eecs.berkeley.edu

Language: English - Date: 2012-12-21 20:22:51
367Estimation theory / Linear algebra / Statistical theory / Econometrics / M-estimators / Fisher information / Tikhonov regularization / Maximum likelihood / Parametric model / Statistics / Algebra / Mathematics

ST01CH11-Wainwright ARI Annual Review of Statistics and Its Application[removed]:[removed]Downloaded from www.annualreviews.org by ${individualUser.displayName} on[removed]For personal use only.

Add to Reading List

Source URL: www.eecs.berkeley.edu

Language: English - Date: 2014-01-12 15:08:52
368M-estimator / Parametric model / Likelihood function / Score / Bootstrapping / Stochastic approximation / Loss function / Big O notation / Maximum likelihood / Statistics / Estimation theory / Fisher information

Communication-Efficient Algorithms for Statistical Optimization 1 Yuchen Zhang1

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2012-11-14 05:54:22
369Statistical theory / Robust statistics / Scientific method / Estimation theory / Collective intelligence / Mathematical model / Non-parametric statistics / Ben Klemens / Maximum likelihood / Science / Statistics / Mathematical software

gsl_stats March 24, 2009 Modeling with Data gsl_stats March 24, 2009

Add to Reading List

Source URL: ben.klemens.org

Language: English - Date: 2009-03-24 10:44:30
370Cluster analysis / Fisher kernel / Information retrieval / Gaussian function / Mixture model / Kernel / Dirac delta function / Expectation–maximization algorithm / Support vector machine / Statistics / Non-parametric statistics / Statistical classification

Mixture Density Mercer Kernels: A Method to Learn Kernels Directly from Data∗ Ashok N. Srivastava, Ph.D.† September 15, 2003 This paper was submitted to the 2004 SIAM Data Mining Conference on September 15, 2003.

Add to Reading List

Source URL: www.riacs.edu

Language: English - Date: 2006-05-22 00:23:38
UPDATE